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1. Introduction

Recently, an increasing number of integrated photovoltaic (PV)
applications appeared.[1–3] The local environment in such appli-
cations plays a significant role in PV modules’ performance, as
modules are no longer unobstructed from the sky dome. The
vehicle-integrated PV (VIPV) is one such application. PV mod-
ules are installed on the car’s roof, sides, hood, or trunk. The
captured solar energy then contributes to vehicle motion and
reduces the frequency of grid charging.

Several commercial VIPV products already exist on the mar-
ket. “Toyota Prius PHEV”, “Hyundai Sonata”, and “Hyundai
Ioniq 5” are examples of mass-produced vehicles with integrated
PV modules. In addition, two start-up companies, “Lightyear”[4]

and “SonoMotors”,[5] feature integrated PV
of near or above one kWp capacity.

The academic works focus on various
aspects of adopting the VIPV technology.
Generally, many studies argue the potential
benefits of the VIPV. Kanz et al.[6] perform
a life-cycle assessment study, simulating
the performance of a delivery van with
VIPV for 8 years in Cologne, Germany,
thus showing the benefits of PV and the
adverse effects of shading on vehicle per-
formance. Heinrich et al.[7] estimate the
expected solar range of different VIPV set-
ups for an average year in Freiburg,
Germany, showing that VIPV could theo-
retically cover the typical driving distance.
Sierra et al.[8] design a study on conceptual
PV applications for electric mobility
systems, revealing several challenges, such

as package requirements and charging technologies. Yamaguchi
et al.[9,10] present a general outlook on different technologies in
VIPV, their conversion efficiency impact on reduction in CO2

emission, and increase in driving range of the electric-based
vehicles. They argue that most family cars in Japan can run only
by sunlight without supplying fossil fuels. However, even general
studies indicate that the local environment and general vehicle
location play a significant role in VIPV performance. Thiel
et al.[11] reveal that the grid power needed to drive such vehicles
on identical routes can vary by more than 44% between climates.

Peibst et al.[12] build a practical electrically driven, commercial
demonstration vehicle with integrated PVs. The demonstrator
vehicle has irradiation, wind, temperature, and magnetic and
global positioning sensors. Peibst et al. report the range exten-
sion of 36 km on a test route.

VIPV modules need to adapt to the shape of a car, and there-
fore they are curved. For example, Neven-du Mont et al.[13] show
that the roof ’s curvature decreases the yield by up to 25% when
using the series interconnection of cells. To mitigate this prob-
lem, they propose the adaptation of the interconnection topology
to the curvature; this is achieved by dividing the module into par-
allel subgroups containing cells with similar azimuth and eleva-
tion angles toward the sun. Another work[14,15] introduces the
curve correction factor to model the irradiance of a curved PV
module. Based on the 1 year measurement data, Ota et al.[15]

report the correction factor of 0.92, implying the 8% loss in per-
formance due to the roof ’s geometry.

VIPV modules are also exposed to significant temperature
changes, as a vehicle absorbs heat when parked and cools down
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during movement. Addressing this problem, Kolhe et al.[16] col-
lect temperature data for five July days in Edinburgh, UK. They
use an 80Wp PV module to manage the cabin heat of a small
parked electric car.

The main challenge in VIPV comes from the effects of the
local environment on the modules’ performance. Tomita
et al.[17] investigate the impact of partial shading and propose
a distributed maximum power point (MPP) tracking to mitigate
the losses caused by partial shading. Their study is verified by the
experiment performed on a sunny day in June on a VIPV-
equipped light van. Wetzel et al.[18] use three high-frequency pyr-
anometers (up to 1 kHz) to record irradiation along a 21 km track
in Hanover and study its impact on the MPP tracker design.
Their findings indicate that irradiance changes predominately
occur at frequencies below 1Hz; however, changes with
100Hz can occur in certain situations, often during sunny
weather. Araki et al.[14,19] model solar irradiance by a random dis-
tribution of shading objects and car orientation with the correc-
tion of the curved surface of the PV modules. Araki et al.[14] also
perform year-long experimental measurements on a vehicle
using multiple pyranometers. We compare our and[14] experi-
ment setups in Section 2.2. De Jong et al.[20] analyzed the PV
potential of the Dutch inland shipping fleet. They implement
an irradiance and temperature model and validate it with the
measurement sensor data collected on a boat. Their findings
indicate that a specific energy yield of the vessels’ fleet can be
approximated with the Weibull distribution, with parameters
depending on particular climate and topography roughness.
Previous studies[21,22] use the proprietary ArcGIS software to
model irradiation for vehicles in Lisbon, Portugal. Section 3 com-
pares our modeling approach with refs. [14,20,22].

Several projects aim to collect measurement data.[23,24] Their
solutions can be potentially scaled up to many users with differ-
ent driving profiles, yielding a unique dataset and assisting in
building accurate irradiance models. We compare these data log-
gers with ours in Section 2.

Despite this progress, we argue that the question of the accu-
rate irradiance and yield modeling for VIPV remains open. At the
same time, precise irradiance modeling is essential in yield sim-
ulations for VIPV, allowing proper investment planning and
facilitating global adaptation of the VIPV technology.
Furthermore, simulations are crucial for designing different
VIPV subsystems, such as inverters, cell topology, and bypass
diodes.

We believe publicly available benchmark measurement data
benefits irradiance/yield modeling problems. Such a dataset
allows researchers to compare their modeling approaches
robustly. Unfortunately, to our knowledge, no such dataset is
available.

Therefore, this article aims to achieve two goals. First, we pub-
lish a large measurement dataset. The data are published in a
challenge, where a large portion is made public, and the rest
is blinded and used to benchmark submitted models. Our focus
is the irradiance, which allows us to eliminate PV module tem-
perature and MPP tracker factors from modeling. Second, we
implement an irradiance model. This irradiance model has some
simplifications, which results in modeling errors. We validate the
irradiance model with the collected measurement data and dem-
onstrate that the model is statistically accurate, namely, it is valid

for irradiation simulations over long periods. Generally, irradia-
tion accuracy is vital for computing the feasibility of VIPV.

Our modeling approach is implemented in several open-
source tools. The Simple Sky Dome Projector (SSDP) library[25]

implements irradiance modeling. The PV-Geographic Raster
Image Processor (PV-GRIP) tool[26,27] is a distributed-computing
framework that addresses a technical challenge, as VIPV model-
ing requires intensive geospatial data processing.

The article is organized as follows. First, we discuss our data
logger setup in Section 2. There we provide the specification of
our sensor box and describe the collected data and where one can
find it. Then, Section 3 elaborates on our irradiance modeling
approach, and Section 4 presents the simulation analysis.
Finally, Section 5 concludes the article.

2. Experimental Section

Our experimental measurement setup consists of a sensor box
mounted on a van. The vehicle performs regular trips in
Germany’s state of North Rhine-Westphalia (NRW) starting in
March 2021. The travel time is more than 73 h, 150 000 obser-
vations, and a 3422 km covered distance.

Each observation consists of the outputs from GPS, a mag-
netic compass, acoustic wind, and irradiance sensors. The aver-
age sensor read-out frequency is 0.58 Hz. We collect data from
different temperature sensors. For instance, apart from the wind
speed, the acoustic wind sensor reads the temperature of the air
passing through it. In contrast, the irradiance sensor measures
the temperature of the sensors’ reference module. Our sensor
box also features several bearing measurements, namely, GPS
and a magnetic compass. The GPS sensor course is accurate
at high speeds, whereas the magnetic compass complements
the GPS at lower speeds. The raw output of the magnetic sensor
is calibrated in the postprocessing stage.

The box is powered via the car battery; hence, it does not
record when the engine is off. Therefore, our data contain travel
data without observations while the vehicle is parked.

Our sensor box is not unique, and several sensor boxes have
been proposed in the literature. Solarjinie[23] is a sensor box that
operates from a battery or external solar panels and records irra-
diance data at a maximum of 0.06 Hz. Unlike our sensor box, it is
compact and can work autonomously without external power.
Therefore, it can also collect data when the car’s engine is off.
However, the device only records GPS location and irradiance,
whereas our data provide a more accurate car orientation, two
different temperature sources, and wind speed. The temperature
and wind values are crucial in yield modeling. Furthermore, our
recording rate is 10 times higher.

Another project, PV2Go,[24] distributes sensor boxes among
volunteers and collects data from 50 different vehicles since
October 2021. The precise characteristics of the device are
unknown, but from the device’s description, it seems to record
only GPS and irradiance. The data from this project will provide a
broader range of driving profiles. Akin to Solarjinie, the PV2Go
box is compact and can be mounted by any volunteer without
sacrificing the looks of volunteers’ cars.

Araki et al.[14] also performed experimental measurements on
a vehicle using five pyranometers. Their data are taken at
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approximately 1 Hz, totaling 200 h of driving and 3200 h of
parked time. We conjecture that their setup also records irradi-
ance sensor temperature. Regarding the irradiance sensor direc-
tions, unlike Araki et al.,[14] our sensor box does not measure
toward the front of the vehicle. Unfortunately, the dataset in
Araki et al.[14] has not been provided in the public domain.

Compared to PV2Go and Solarjinie devices, our setup is bulk-
ier. However, we store a wider variety of data that can benefit
yield modeling. The design in Araki et al.[14] is similar to ours
but can record during the vehicle’s parked state. However,
Araki et al.[14] lack acoustic wind sensors.

Hereafter, we elaborate on our sensors setup (Section 2.1) and
describe the collected data (Section 2.2).

2.1. Sensors Setup

Our sensor setup consists of a data logger box with four irradi-
ance sensors and one acoustic wind sensor. The data logger is
implemented with Raspberry PI model 3 bþ, powered by the
car’s electrical system, and records data on an SD card. The data
logger and the sensors are mounted on aluminum profiles,
attached to a standard roof rack.

The GPS sensor is placed on a data logger box and provides
information on the time, location, altitude, speed, and bearing.
We use the Adafruit 2324 GPS Hat for the Raspberry PI. In addi-
tion, an Adafruit magnetometer (LSM303) complements the
GPS-based course.

The magnetometer bearing of the car will generally be less
accurate and more prone to distortions than the GPS bearing,
provided the vehicle has a sufficient velocity to compute a precise
direction. The magnetometer is thus only required to determine
the bearing at low speeds. A magnetometer generally needs to be
calibrated to compensate for hard and soft magnetic offsets. Most
time, our car is moving sufficiently fast to compute a GPS bear-
ing; we calibrate the hard and soft magnetic offsets to match the
GPS bearing. After calibration, the overall root-mean-square
deviation between the magnetometer and GPS bearings equals
7.4°.

We use four calibrated silicon irradiance sensors from
Ingenieurbüro Mencke & Tegtmeyer GmbH, of type
Si-RS485TC-T-MB. The sensors measure instantaneous irradi-
ance, not the integrated irradiation between measurements.

Irradiance sensors also provide a temperature of the sensor solar
reference cell.

The irradiance sensors are mounted on the vehicle’s roof and
positioned on four sides: roof, left, right, and rear. The roof sen-
sor is oriented toward the sky, and others are oriented toward the
horizon. Unfortunately, our specific car setup does not allow
placing the rear sensor far behind the roof. Hence, it is exposed
to reflections from the car roof. The collected data and our simu-
lation models illustrate this. Furthermore, we suggest that it is
essential to periodically clean the irradiance sensor, as they get
dusty, especially during the autumn and winter.

We use an FT205EV acoustic wind sensor by FT Technologies
Ltd. for measuring wind velocity. The sensor is positioned at
approximately the level of the irradiance sensors. In addition
to the wind speed and direction (relative to the car), it also pro-
vides the acoustic air temperature derived from the measured
sound’s speed.

Figure 1 shows a photograph of our sensor box setup.

2.2. Collected Data

The data are collected continuously from March 2021. Figure 2
depicts the driving profile between March 2021 and October
2021. The vehicle travels through urban areas in Aachen,
Jülich, and Düren, as well as areas with agricultural fields, for-
ests, and the hilly regions in Eifel. The road types range from
narrow roads and motorways.

Our vehicle travels in total 3422 km. Throughout the 8
months, the car takes various routes with a total length of
330 km. The total travel time equals 73 h. Most trips start around
8 am from the research center and go toward one of the destina-
tion locations. Most of the destinations are located in the south-
west direction. The return trips happen between 1 and 3 pm in
the northern direction. Such a regular travel pattern introduces
an asymmetry in irradiation of the vehicle’s left and right sides
(see Table 3 in Section 4).

We publish the collected data in a challenge form refs. [28,29].
The challenge contains our sensor measurement data and the
satellite-based atmospheric irradiation values (see Section 3.2).
Approximately 70% of the data are entirely open, and the rest
of the data irradiance sensor outputs are blinded and only used
for evaluation. Such an approach permits an honest comparison

Figure 1. View on the sensor box from the rear–right side of the vehicle. The data logger is encapsulated in a weather-proof box and mounted with other
sensors on aluminum profiles. The acoustic wind sensor is located right next to the right irradiance sensor. The rear sensor sees many reflections from the
white roof of the vehicle.
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of different models and allows other research groups to bench-
mark their irradiance models. Furthermore, the challenge plat-
form permits additional stages when new data become available.

To evaluate the challenge honestly, we ensure that data in the
training and evaluation part of the dataset do not correlate. We
achieve this by placing training and evaluation data away from
each other. We define a list of regions (sized 3� 5 km2) and ran-
domly allocate some regions to be public and some to be hidden.
Approximately 70% of those areas are made public. Figure 2
depicts those regions using blue- and red-colored rectangles.

Table 1 summarizes information on the provided fields and
their units.

3. Irradiance Modeling

Our irradiance modeling uses low- and high-resolution topogra-
phy and low-resolution weather data to compute effective

irradiation on the surface of the moving vehicle. Our approach
is implemented through the open-source SSDP[25] library and
PV-GRIP[27] distributed-computing framework.

Several irradiance modeling approaches have been proposed
in the literature. For example, previous studies[14,19] model solar
irradiance by a random distribution of shading objects and car
orientation with the correction of the curved surface of the PV
modules. The limitation of the modeling approach of Araki
et al.[14] is that their model relies on the random number and
assumes that every parameter affecting the solar resource on
the car roof and car side is distributed by a simple rule, for exam-
ple, ranged uniform distribution. Such modeling may be mean-
ingful for the averaged or integrated energy yield. However, it is
inapplicable for power prediction in specific driving points,
climates, and conditions. The given distributions may not equal
the actual situation that varies for every position and time.
Hence, the approach is to be applied to annual or other long-term
integration like yearly energy yield.

Figure 2. March 2021–October 2021 driving profile. Different colors indicate training (blue) and testing (red) regions. Blue and red points (curves) show
the vehicle’s movement. The semitransparent blue and red rectangles show the grid used for public and blinded datasets.
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Another group[21,22] uses the “Area Solar Radiation” function
in the proprietary software ArcGIS to perform various
VIPV-related computations. Brito et al.[22] query parking site loca-
tions using OpenStreetMaps data and raster images obtained by
LIDAR point clouds to model irradiation of the parking spaces in
Lisbon, Portugal. Their model considers ground declination and
shadows cast by the surrounding buildings. They, however, ignore
any locations that contain any trees. Furthermore, they neglect the
vehicle’s height, i.e., their irradiationmeasurements are simulated
at the ground level. Brito et al.[22] use topography with a resolution
of 1m2 pixel�1. Finally, simulations in Brito et al.[22] are yet to be
verified with experimental measurement data.

De Jong et al.[20] implement an irradiance model based on the
Perez All-Weather sky model and the digital surface topography
data. They use the nearest weather station to obtain the hourly
GHI irradiance values for the irradiance data. For the topography
data, they used sampled LIDAR data with the maximum statistic
with a resolution of 0.5� 0.5 m2. Their irradiance model is akin
to ours but implemented in MATLAB. Their measurement data
record the PV module’s voltage and current at a rate of
0.0017Hz, location, orientation, ambient temperature, and wind
speed. de Jong and Ziar[20] verify their model using the PV mod-
ule power output, which includes not only irradiance but also the
influence of the module’s temperature.

In the following, we address two questions. First, Section 3.1
elaborates on the SSDP library. Our current model is not ideal,
and we discuss its limitations. Then, Section 3.2 discusses the geo-
spatial data we use for our simulation and the challenges it imposes.

3.1. Modeling with SSDP

Various methods exist to model irradiance that considers shad-
ing from the environment, ranging from ray-tracing solutions to
simpler models such as “r.sun”[30] and “Solar Analyst”.[31] A
complete ray-tracing solution is too computationally intensive
for the VIPV setting. However, the simpler models typically
use an isotropic diffuse light approximation and are not opti-
mized for VIPV applications. The SSDP library[25] implements

the Perez All-Weather sky model[32] to account for a nonisotropic
diffuse light component. Furthermore, the SSDP tool imple-
ments several VIPV-specific simulation modes to model irradi-
ance along a route, where the orientation and tilt of the incident
plane are adapted to the course, road tilt, module orientation, and
height offset.

Our irradiance model implementation is similar to the one
described in Fu and Rich.[31] For that, we divide the sky dome
into patches and assign an irradiance value for each patch accord-
ing to the Perez model.[32] The sun is modeled as a point in the
sky. The FreeSPA library[33] is our open-source implementation
of the NREL Solar Position Algorithm.[34]

The sky is projected on a surface with a given position and
orientation, yielding the plane of array irradiance, IPoA, for each
observation point. The IPoA consists of several components

IPoA ¼ Idirect þ Idiffused þ Iground (1)

where Idirect is the direct light from the sun, Idiffused is the dif-
fused light, and Iground is the light that comes from the ground.
The Idirect is nonzero when the sun is visible to the observer, and
is determined using observer orientation, sun position, and the
horizon around the observer. The Idiffused light consists of all vis-
ible sky patches and results from the sky model. The ground
component Iground has a simplified model of the light reflected
from the ground. We take the light from sky patches obstructed
by the horizon and scale the resulting value with the albedo
parameter [0,1]. We refer the reader to refs. [31,32] for more
details. Our implementation can be obtained here.[25]

SSDP works with topography data represented either with a
raster image (e.g., Digital Elevation Model) or an irregular mesh
of points (unprocessed LIDAR point clouds). The library does not
use any specific coordinate system. Hence, we resample topog-
raphy data in a metric coordinate system and feed it to the SSDP.
Furthermore, it allows us to sample topography, take tilts in
roads, and specify the offset and orientation of modules to model
the module position correctly.

The SSDP irradiancemodel has its limitations. The topography
is modeled as a surface and does not capture any 3D objects. For

Table 1. Description of fields of the published data.[28,29]

Field Description

“gps time utc” Unix timestamp

“timestr” Time string in the format “%Y-%m-%d_%H:%M:%S” with UTC time zone
(reformatted “gps time utc”)

“latitude”, “longitude” GPS coordinates

“gps altitude (m)”, “gps speed (m s�1)”, “gps course
(deg)”, “gps climb (mmin�1)”

Altitude, speed, bearing and climb rate

“gps EPX Estimated * Error” GPS estimated errors

“Magnetic Bearing [deg.], Magnetic Tilt [deg.]” Magnetic compass bearing and tilt

“module”, “sensor_azimuth”, “sensor_zenith” Side of the irradiance sensor (“module” attains values: “roof”, “left”, “right”, “rear”). “sensor_azimuth” and
“sensor_zenith” define orientation of the irradiance sensor. Azimuth computed from magnetic compass, zenith 0

corresponds to the sky orientation

“irradiance_Wm2” Irradiance sensor readings

“GHI”, “DHI”, “Clear sky GHI”, “Clear sky DHI” Copernicus irradiance values

“geohash” Region id which is used in training dataset split[40]
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instance, in our model, trees cast more shadows than in reality.
Furthermore, SSDP is not a ray-tracing library; hence, the
light reflections are modeled with significant simplifications.
Nevertheless, such an approach dramatically improves the perfor-
mance of simulations, allowing VIPV modeling over long routes.

3.2. Geospatial Data

The dynamic nature of a moving vehicle is the main challenge in
the irradiance modeling that distinguishes VIPV from other PV
applications. When a car moves, the environment and shading
conditions are highly dynamic. Therefore, unlike the problem
of irradiation modeling for building-integrated PV, VIPV
requires intensive topographical LIDAR data processing. For
example, our vehicle covers over 330 km of the unique road sur-
face. Therefore, we must resample and prepare large volumes of
data for the SSDP library’s input. We developed a scalable
distributed-computing framework implemented in the
PV-GRIP tool to accelerate this process. We refer the reader to
Sovetkin et al.[26] for more details about the PV-GRIP architecture.

We need two kinds of geospatial data for our simulations: topo-
graphical data and atmospheric irradiation data. We use data from
three sources for topography data: aerial-measured LIDAR data
provided by the NRW state,[35] satellite-measured Shuttle radar
topography data (SRTM),[36] and Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER).[37] We resample
the topography data in the local UTM metric coordinate system
to ensure that our shadows are simulated with the correct size.

The LIDAR data are provided in a “laz” format, and we resam-
ple the cloud points by computing different statistics for every
region of size 30� 30 cm2 pixel�1. Among those statistics for
us are interesting maximum and minimum statistics.
Figure 3 demonstrates the so-called “hillshade” images of the
sampled LIDAR data. The left image in Figure 3 is generated
using the maximum value statistic that captures the shape of veg-
etation and buildings. The minimum value statistic (the right
image, Figure 3) gives a view with buildings but without trees.
The foliage is not visible in the minimum statistic plot since one
of the reflections of the laser comes from the ground.

In addition to aerial-measured LIDAR, we use SRTM and
ASTER data, the satellite-based topography data. These data
sources have a courser resolution of 90� 90m2 pixel�1 and

30� 30m2 pixel�1 for SRTM and ASTER data, respectively.
The satellite-based topography data do not capture any building
or vegetation but provide a generic topography outlook.

In addition to the topography data, we use Copernicus,[38] a
satellite-based atmospheric data service. It provides GHI,
DHI, and corresponding clear sky values with a spatial resolution
of approximately 5 km and temporal resolution of about 10min.

4. Results

For simulations in this article, we look at the model’s perfor-
mance implemented in the SSDP library using different topog-
raphy sources: LIDAR, ASTER, and SRTM (see Section 3.2).
These data sources are resampled with different resolutions.
Furthermore, for each observation data point, the topography ras-
ter data are sampled so that a square of a specific size with the
center at the observation point is wholly contained inside the
sampled raster image. We call this square a minimal square.
This sampling strategy ensures that at least the minimal-
square-size worth of topography data is used to compute shading.

We sample the LIDAR data with 30� 30 cm2 pixel�1 resolu-
tion, maximum and minimum statistics, and a minimal square
size of 200m. Next, the ASTER data are sampled with a resolu-
tion of 10� 10m2 pixel�1 and a minimal square size of 500m.
Finally, the SRTM is sampled with 50� 50m2 pixel�1 and a min-
imal square size of 2000m.

Figure 4 shows simulated versus measured irradiance of the
roof sensor for each car’s location (left) and 1min average (right).
We use LIDAR-max topography data for those simulations with an
albedo value of 0.25 and a height offset of 2m. Unfortunately,
many measurements do not agree with simulations (Figure 4,
left). The modeling errors can be attributed to two sources.
First, the limitations of the SSDP discussed in Section 3.1 result
in an imprecise representation of geographical objects and their
shadows. In particular, our topography simplification produces
significantly larger shadows for trees. Second, our model does
not include any shading from the clouds, as we use low-resolution
satellite-based atmospheric irradiation data to generate the sky
model approximation with the Perez All-Weather sky model.

Those modeling errors depend on the vehicle’s location and
surroundings. Figure 5 illustrates this by plotting the standard

Figure 3. “Hillshade” visualization of terrain sample from LIDAR in the region of the “Super C” building in Aachen, sampled with the maximum statistic
(left) and the minimum statistic (right). Resolution 30� 30cm2 pixel�1.
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Figure 4. Simulated versus measured irradiance for every observation (left) and average irradiance over 1min (right) for the roof sensor. The 1min
intervals contain�35 observations. Bright colors indicate a denser point population. The R2 value equals 0.37 (left) and 0.63 (right). The bias (measured
minus simulated) equals 33 Wm�2.

Figure 5. Color squares depict the standard deviation of the difference between simulations and measurements computed for different regions. The red
color points correspond to the vehicle locations. The model is less accurate in the southern part: a national park with many forests; and more accurate in
the northern region: flat roads surrounded by fields.
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deviation between measured and simulated irradiance computed
for different travel regions. The brighter colors indicate more sig-
nificant simulation errors and are located in the southern part.
Those are the areas of the national park Eifel with narrow roads
that go through forests. The darker colors are primarily located in
central and northern areas, where vehicles travel on motorways
surrounded by agricultural fields.

The modeling errors do not permit us to have a precise irra-
diance model for each location. Nevertheless, our model is valid
in a statistical sense: when we average irradiance over a short
time (Figure 4, right), the model’s errors cancel each other,
and prediction improves. This improvement is illustrated in
Figure 4, where the R2 value increases from 0.37 (Figure 4, left)
to 0.63 (Figure 4, right).

Figure 4 right reveals a slight bias—our model slightly under-
estimates the irradiance (bias equals 33 Wm�2). Such underes-
timation can be attributed to the LIDAR-max topography because
it models opaque trees with more prominent shadows.
Simulations with the LIDAR-min topography show a similar
R2¼ 0.65 for the 1 min average irradiance and a negative bias
of�24Wm�2. The LIDAR-min does not contain any tree crowns
(see Figure 3, right), so our model overestimates the irradiance.

There are several model parameters that influence the simu-
lation outcome. To illustrate the effect of different parameters,
we compute the irradiation of the sensors over the whole mea-
surement period. For that, we integrate irradiance, assuming the
irradiance to be constant between measurements, and split all
data into parts; there are no observations with a time difference
of more than 30 s in every part of the data. Integrated parts are
then summed up. The total integration time equals 73 h.

The height offset parameter defines the location height where
irradiance is simulated. The left side of Table 2 illustrates that
irradiation simulations on the ground-level lead to a 16% irradi-
ation reduction (average for all sensors) compared to the simu-
lations at the 2m level. Such reduction occurs because shadows
are more prominent at the ground level. The albedo parameter
controls the amount of ground irradiance component
(see Section 3.1). The right side of Table 2 shows simulations
for different sensor, albedo values, and height offset of 2 m.
The albedo value has a negligible effect on the roof sensor
(only little topography is visible from roof sensor orientation)
and a significant effect on the sensors oriented toward the hori-
zon. Finally, the number of sky patches may influence the shape
of shadows but has a minor influence on the irradiance. In all our

simulations, we selected 269 sky patches. RMSE between irradi-
ance simulation with 1139 and 269 patches equals 12.

Table 3 provides simulation results using different topography
data sources. For these simulations, we choose the height offset
of 2 m (the van’s height). For the left, right, and roof sensors, the
albedo value equals 0.25, and for the rear sensor, albedo equals
0.75 (the rear sensor is exposed to the reflections from the white
roof, see Figure 1). Different topography data sources allow us to
study the influence of various topographical features on irradia-
tion. From Table 3, comparing “LIDAR min” and “measured”,
we conclude that vegetation decreases irradiation by 13%.
Furthermore, vegetation and buildings reduce irradiation by
35% (comparing “measured” with “ASTER” simulations).

Our simulations have been performed on eight heterogeneous
nodes with 160 GB of RAM and 52 workers combined. Our data-
set of 3422 km of the route takes around 4 h to sample 400 km2 of
LIDAR data and perform irradiance simulations. LIDAR data
sampling takes approximately 3 h. In PV-GRIP, the results of
all computation routines are cached; therefore, irradiance simu-
lation in the same region will be computed faster when sampled
LIDAR data is available. The performance bottleneck in our sim-
ulations are input/output operations, as irradiance simulations
take 10 s for a single raster image of 0.4 km2 with resolution
of a 30� 30 cm2 pixel�1. Sampling and simulation for SRTM
and ASTER topography data are faster and require approximately
30min. We use 660 GB for raw data and 200 GB for sampled data
in terms of storage.

5. Conclusions

This article introduced a public dataset containing VIPV mea-
surement data. The dataset is published as a challenge,[28,29]

where everyone may benchmark their irradiance model.
Generally, VIPV irradiance modeling introduces technical chal-
lenges: analyzing the environment around a moving vehicle
requires processing a large amount of geospatial data. We over-
come this challenge by introducing a distributed-computing-
based modeling tool PV-GRIP. Furthermore, irradiance
modeling is achieved using our open-source C-library SSDP,
which efficiently performs simulations over long routes.

Our irradiance modeling uses high-resolution aerial-
measured LIDAR topography and satellite-based low-resolution
atmospheric irradiance data. We demonstrated that the topogra-
phy and sky model approximations do not permit accurate irra-
diance simulation. Therefore, we recommend utilizing several

Table 2. Comparison of irradiation (kWhm�2) simulations for different
albedo and height offset parameters. All simulations use LIDAR-max
topography. The rear sensor needs larger albedo values, as it is
exposed to the reflections from the white roof (see Figure 1).

Albedo 0.5 0 0.25 0.5 0.75 1
Measured

Offset 0 1 2

Roof 17.55 18.90 19.15 19.43 19.71 19.99 20.27 21.85

Left 10.69 12.25 9.48 11.27 13.07 14.87 16.67 12.00

Right 7.83 8.99 6.17 7.86 9.55 11.23 12.92 7.33

Rear 10.23 11.62 8.75 10.52 12.29 14.06 15.83 14.58

Table 3. Comparison of irradiation (kWhm�2) simulations for different
topography sources. For those simulations, we select albedo 0.25 for
the roof, left and right sensors, and 0.75 for the rear sensor. The
height offset parameter is set to 2m.

Measured LIDAR-max LIDAR-min ASTER SRTM GHI

Roof 21.85 19.43 23.64 27.19 27.54 27.95

Left 12.00 11.27 13.80 16.86 17.26

Right 7.33 7.86 9.16 11.55 11.79

Rear 14.58 14.06 16.67 20.10 20.47

Total 55.76 52.62 63.27 75.70 77.06
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sources of topography data to correct for such environmental
effects for future work. Nevertheless, we showed that the irradi-
ation model over long periods agrees with the collected
measurements.
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